Parahydrogen hyperpolarization: biomedical imaging to RASER physics

After a brief break during December 2020, Global NMR Discussion Meetings is excited to continue hosting educative lectures on a wide variety of NMR topics starting January 2021. In session 20 that was held on 19th January, 2021 (via Zoom), Prof. Thomas Theis gave a talk on "Parahydrogen based hyperpolarization, novel development for applications ranging from biomedical imaging to RASER physics." The video was recorded live during the presentation and serves as an educative lecture.

Bio: Dr. Thomas Theis is Assistant Professor at North Carolina State University and Adjunct Assistant Professor at the University of North Carolina at Chapel Hill. His research is focused on hyperpolarization technology and unconventional NMR and MRI detection schemes. Dr. Theis was born in Heidelberg, Germany, raised in Tenerife, Spain, and completed his undergraduate and masters at the Georg-August University of Goettingen (Germany). Theis received his PhD in 2012 from UC Berkeley (USA) working with Prof. Alexander Pines on "zero-field NMR" and “parahydrogen hyperpolarization schemes” for portable NMR. Dr. Theis conducted postdoctoral research at Duke University (USA) with Prof. Warren Warren focused on "singlet states for hyperpolarization storage", and worked on "low-field NMR" as visiting professor at RWTH Aachen University with Prof. Stephan Appelt (Germany). In 2015, he was promoted to Research Assistant Professor at Duke University developing “cost-efficient hyperpolarization techniques for molecular imaging”. Since 2018, Dr. Theis leads the North Carolina State Hyperpolarization Laboratory.

Follow Prof. Theis on:

Google scholar: https://scholar.google.com/citations?...

Research group website: https://theislab.wordpress.ncsu.edu/p...

Abstract: Parahydrogen based hyperpolarization methods can create nuclear spin hyperpolarization directly in room temperature solutions to enhance NMR and MRI signals by up to seven orders of magnitude, depending on the magnetic field. Novel approaches to Parahydrogen Induced Polarization (PHIP) open new windows of opportunity in the field of magnetic resonance. In this talk the four following topics are discussed:

1) Parahydrogen as a Source of Spin Order, an Introduction.

2) Optical detection of PHIP with Rb-vapor and NV-centers.

3) Everlasting Sources of Long-Lasting Hyperpolarization.

4) The parahydrogen pumped RASER for precision measurements.

Link: https://youtu.be/st-vQC-_8_4

Previous
Previous

Statistical Learning of NMR tensors

Next
Next

Frequency-Agile Instrumentation for High Field DNP/EPR Spectroscopy