Videos
NMR approaches for intrinsically disordered proteins
During the 91st session of the Global NMR Discussion Meetings held on November 5th, 2024, via Zoom, Prof. Julie Forman-Kay from the University of Toronto & SickKids Research Institute, Canada, gave a talk on the topic "NMR approaches for intrinsically disordered proteins". The recording serves as a tutorial.
Abstract: NMR is a powerful tool for obtaining site-specific information about dynamic systems, including intrinsically disordered proteins and protein regions (IDPs/IDRs) which do not adopt unique, stable folded structures. While computational approaches are increasingly powerful for stable proteins and protein domains, there is a huge need for experimental information about IDPs, IDRs and the highly dynamic complexes that they often make with other disordered proteins, folded domains and other biomolecules. The lecture will highlight examples of NMR studies of IDPs and their dynamic complexes, including condensed state models of those found in biomolecular condensates.
Find out more about Prof. Julie Forman-Kay's research: https://biochemistry.utoronto.ca/person/julie-d-forman-kay/
Gradient Pulses On Moving Spins
During the 86th session of the Global NMR Discussion Meetings held on May 21st, 2024 via Zoom, Dr. Jean Nicolas Dumez from the University of Nantes, France gave a talk on the topic "Gradient pulses on moving spins: flow NMR methods for reaction monitoring". The recording serves as a tutorial.
Abstract: Flow NMR is a powerful approach to monitor chemical reactions, with applications in fields such as catalysis and polymer science. The sample flow makes it necessary to revisit some of the core concepts of NMR pulse sequences. This presentation will describe recent developments of fast multidimensional NMR methods that are applicable in continuous flow, and the underlying spin dynamics concepts.
Dr. Dumez's research: https://www.univ-nantes.fr/jean-nicolas-dumez
Hyperpolarized Xe NMR in Molecular Cavities Study and MR Imaging
During the 83rd session of the Global NMR Discussion Meetings held on March 26th, 2024 via Zoom, Prof. Leif Schröder from the German Cancer Research Center gave a talk on the topic "Hyperpolarized Xenon NMR for Exploring Molecular Host Cavities and Advancing MR Imaging". The recording serves as a tutorial.
Abstract: The large chemical shift range of Xe-129 NMR makes this nucleus a valuable probe in spectroscopy and biomedical imaging. Hyperpolarized Xe can be used also as dissolved noble gas to provide 10’000-fold improved sensitivity over extended periods of time. In combination with saturation transfer techniques, reversibly bound hyperpolarized xenon gives insights into exchange kinetics of various host-guest complexes. This talk will give an overview of studies investigating the affinity of dissolved Xe for various hosts like biogenic hollow protein structures with attoliter volumes or synthetic hosts for trapping individual Xe atoms. Both strategies find applications in the spectroscopic investigation of exchange kinetics of host-guest systems and in the design of ultra-sensitive magnetic resonance imaging agents.
Prof. Schroeder's research: https://www.dkfz.de/en/translationale-molekulare-bildgebung/index.php
NMR Metabolomics in Drug Discovery and Disease Diagnosis
During the 82nd session of the Global NMR Discussion Meetings held on March 12th, 2024 via Zoom, Prof. Robert Powers from the University of Nebraska-Lincoln, United States, gave a talk on the topic "The Application of NMR Metabolomics to Drug Discovery and Disease Diagnosis". The recording serves as a tutorial.
Abstract: NMR-based metabolomics has benefited a variety of fields including drug discovery and disease diagnosis. Metabolomics is technically very challenging and requires expertise in a diversity of scientific areas. In this regard, this tutorial will discuss best practices for sample preparation and handling, data collection and analysis, and statistical modeling and interpretation to achieve biologically and clinically significant results.
Prof. Robert Powers' research group website and bio: https://chem.unl.edu/robert-powers
Why Is DOSY So Different From COSY?
During the 80th session of the Global NMR Discussion Meetings held on February 13th, 2024 via Zoom, Prof. Gareth Morris from the University of Manchester, United Kingdom, gave a talk on the topic "Why is DOSY so different from COSY?". The recording serves as a tutorial.
Abstract:
Peaks in COSY, NOESY, ROESY and HSQC 2D spectra either appear where they should, or not at all. In DOSY spectra, it is all too common to see peaks at incorrect positions in the diffusion domain. This tutorial will explore why this happens, what we can do about it, and how to avoid being misled by DOSY spectra.
Prof. Gareth Morris' research group website and bio: https://nmr.chemistry.manchester.ac.uk/?q=node%2F13
Characterization of polymeric materials in bioapplications
During the 79th session of the Global NMR Discussion Meetings held on January 30th, 2024, via Zoom, Prof. Ann-Christin Pöppler from the University of Würzburg, Germany, gave a talk on the topic "Challenges in the characterization of polymeric materials for drug delivery and tissue engineering applications". The recording serves as a tutorial.
Abstract:
NMR spectroscopy is sensitive to subtle changes in local environment and dynamics over multiple length and time scales making it a versatile technique to study polymeric materials and incorporated molecules. Challenges, which will be discussed in this presentation arise from the size (distribution), rigidity and intrinsic disorder of the samples.
Prof. Ann-Christin Pöppler's research group website: https://www.chemie.uni-wuerzburg.de/oc/poeppler-group/
Single Chip Dynamic Nuclear Polarization Microsystems
During the 78th session of the Global NMR Discussion Meetings held on January 16st, 2024 via Zoom, Dr. Nergiz Sahin Solmaz from EPFL in Lausanne, Switzerland, gave a talk on the topic "Single Chip Dynamic Nuclear Polarization Microsystems". The recording serves as a tutorial.
Abstract:
Dynamic nuclear polarization (DNP) is one of the most powerful and versatile hyperpolarization methods to enhance nuclear magnetic resonance (NMR) signals. A major drawback of DNP is the cost and complexity of the required microwave hardware, especially at high magnetic fields and low temperatures. To overcome this drawback and with the focus on the study of nanoliter and subnanoliter samples, I will present single chip DNP microsystems where the microwave excitation and detection are performed locally on chip without the need of external microwave generators and transmission lines.
Dr. Nergiz Sahin Solmaz's website: https://people.epfl.ch/nergiz.sahin?lang=en
NMR Strategies for Examining Interactions with Nanoparticles
During the 77th session of the Global NMR Discussion Meetings held on December 19st, 2023 via Zoom, Prof. Leah B. Casabianca from Clemson University, United States, gave a talk on the topic "NMR Strategies for Examining Interactions Between Small Molecules and Nanoparticle Surfaces". The recording serves as a tutorial.
Abstract:
Interactions between small molecules and the surface of nanoparticles are important in a variety of fields, from drug delivery to the fate of nanoparticles in the environment. In this talk, I will discuss several NMR techniques that can be used to gain structural and dynamic information about these interactions, with a focus on saturation-transfer difference (STD)-NMR.
Prof. Leah Casabianca's research group website: https://chemistry.sites.clemson.edu/c...
Inside an NMR Spectrometer
During the 73rd session of the Global NMR Discussion Meetings held on October 24th, 2023 via Zoom, Prof. Kazuyuki Takeda from Kyoto University in Japan, gave a talk on the topic "Inside an NMR Spectrometer". The recording serves as a tutorial.
Abstract: Let us take a brief look at what is happening inside an NMR spectrometer when we operate it, running pulse sequences and acquiring NMR signals. In particular, I will focus on open-resource, home-built NMR spectrometers we routinely use in our lab, and show how we apply them in the conventional and unconventional NMR experiments.
Website: http://kuchem.kyoto-u.ac.jp/bun/indiv/takezo/index_en.html http://www.kuchem.kyoto-u.ac.jp/organization/member/bk_200710/takezo_e.html
Explorations in NMR Relaxation
During the 72nd session of the Global NMR Discussion Meetings held on October 10th, 2023 via Zoom, Prof. Alexej Jerschow gave a talk on the topic "Explorations in NMR Relaxation by Experiments and MD/Ab Initio Computation". The recording serves as a tutorial.
Prof. Alexej Jerschow is a Professor of Chemistry at New York University, USA.
Website: https://wp.nyu.edu/jerschow/
Google scholar: https://scholar.google.com/citations?...
X (previously Twitter): https://twitter.com/ajerschow
NMR Pulse Sequence Basics and Design Principles
During the 71st session of the Global NMR Discussion Meetings held on September 26th, 2023 via Zoom, Prof. Tairan Yuwen gave a talk on the topic "NMR pulse sequence basics and design principles". The recording serves as a tutorial.
Prof. Tairan Yuwen is an Assistant Professor at Peking University, China
Abstract: NMR is commonly used for studying structure and dynamics of molecules, and many NMR experiments have been developed for different purposes. In each NMR experiment it is necessary to choose the most suitable NMR pulse sequence to obtain optimal results, which requires understanding about the basic theory. During NMR pulse sequence the studied system is evolved under different types of interactions, which can be represented by density matrix or product operator. The basic syntax for NMR pulse sequence programming will be briefly introduced together with several examples, which helps to understand how NMR pulse sequences work and make further optimization.
Magnetic Resonance Spectroscopy Using Spin Defects in Diamond
During the 69th session of the Global NMR Discussion Meetings held on June 13th, 2023 via Zoom, Prof. Dominik Bucher gave a talk on the topic "Nano- and Microscale Magnetic Resonance Spectroscopy Using Spin Defects in Diamond". The recording serves as a tutorial.
Abstract: Nuclear magnetic resonance (NMR), one of the most powerful analytical techniques in chemistry and life sciences, is typically limited to macroscopic volumes due to its inherent low sensitivity. This excludes NMR spectroscopy from the analysis of microscopic sample sizes, such as in single-cell biology or microfluidic applications. In recent years, it has been shown that NMR signals from nano- to microscale volumes can be detected by a new class of sensors - quantum sensors based on defects in the diamond lattice - the nitrogen vacancy (NV) centre. In this talk, I will first introduce NV centres and explain how these atom-sized sensors can be used to detect NMR signals. In the second part, I will provide an overview of this rapidly developing technology and discuss potential applications ranging from surface and materials science to lab-on-a-chip applications.
Prof. Dominik Bucher is a Rudolf-Mößbauer Professor at the Technical University of Munich (TUM), Germany.
Website: https://www.ch.nat.tum.de/en/qsens/home/
Google scholar: https://scholar.google.de/citations?u...
Twitter: https://twitter.com/Bucherlab
Understanding Pure Shift NMR Spectroscopy
During the 67th session of the Global NMR Discussion Meetings held on May 16th, 2023 via Zoom, Dr. Laura Castañar Acedo gave a talk on the topic "Understanding Pure Shift NMR Spectroscopy". The recording serves as a tutorial.
Abstract: In recent years, a high interest has emerged in the development and application of Pure Shift NMR spectroscopy. Such techniques greatly enhance resolution of NMR spectra by suppressing the effects of homonuclear coupling interactions, turning multiplet signals into singlets, drastically reducing spectral complexity. This tutorial aims to provide a concrete introduction to the theoretical and practical aspects of pure shift NMR, facilitating the development and adoption of the technique to a wider community.
Dr. Laura Castañar Acedo is a Research Fellow at the Department of Organic Chemistry, University Complutense of Madrid.
Chemical Exchange Saturation Transfer (CEST) MRI
During the 62nd session of the Global NMR Discussion Meetings held on February 21st, 2023 via Zoom, Prof. Elena Vinogradov gave a talk on the topic "Chemical Exchange Saturation Transfer (CEST) MRI: from basic principles to potential clinical applications". The recording serves as a tutorial.
Abstract:
Novel MRI methods are focusing on imaging events and structures at the molecular level. One of the methods gaining popularity is Chemical Exchange Saturation Transfer (CEST). Here we will discuss basic physical principles of this approach, followed by potential applications and challenges associated with the translation to in-vivo and human imaging.
Prof. Elena Vinogradov is an associate Professor at UT Southwestern Medical Center in Dallas, Texas.
Microfluidics & Magnetic Resonance: A multidisciplinary challenge
During the 60th session of the Global NMR Discussion Meetings held on January 24th, 2023 via Zoom, Prof. Marcel Utz gave a talk on the topic "Microfluidics & Magnetic Resonance: A multidisciplinary challenge". The recording serves as a tutorial.
Abstract:
Microfluidic technology has rapidly advanced over the last two decades, and is increasingly transforming the practice of life science research, as well as (arguably more slowly) medical diagnostics. In particular, microfluidic assays are ideal platforms for the culture of cells, cell aggregates, and tissue slices, and form the basis of increasingly predictive disease models. Nuclear magnetic resonance, due to its non-invasive nature and ability to provide rich and detailed information on biological systems, is ideally suited to follow life processes in such microfluidic culture devices. However, the integration of high-performance NMR spectroscopy with microfluidic lab-on-a-chip devices is technically challenging due to the small sample volumes involved. Recent advances in hyperpolarization and alternative detection approaches offer important opportunities in this field. In this talk, I will give an overview of the opportunities and challenges in microfluidic NMR, and present some recent examples.
Prof. Marcel Utz is Professor of Magnetic Resonance, Microfluidics, and Complex Materials within Chemistry at the University of Southampton.
Website: https://utzgroup.ddns.net
Google scholar: https://scholar.google.com/citations?...
NMR Studies of Gases Adsorbed in Materials and of CO2 Capture
During the 56th session of the Global NMR Discussion Meetings held on November 15th, 2022 via Zoom, Dr. Alexander Forse from University of Cambridge, gave a talk on the topic "A guide to NMR studies of gases adsorbed in materials, with examples on carbon dioxide capture". The recording serves as a tutorial.
Abstract:
In this zoominar I will introduce methods for carrying out NMR spectroscopy experiments on gas adsorption in porous materials. I will introduce the main approaches that are used for these experiments in the literature, and will give examples from our own research on carbon dioxide capture in metal-organic frameworks. Examples will include solid-state NMR studies of carbon dioxide capture in amine-functionalized MOFs, as well as pulsed-field gradient NMR measurements of anisotropic gas diffusion.
Speaker's biography:
2012-2015: PhD in Chemistry, University of Cambridge, UK (Prof. Grey)
2016-2019: Postdoctoral Fellow, UC Berkeley, USA (Prof. Reimer & Prof. Long)
2019-present: Assistant Professor, University of Cambridge, UK
Follow Dr. Forse's work here:
Twitter: https://twitter.com/alexforse1?lang=en
Google scholar: https://scholar.google.com/citations?...
Website: https://www.ch.cam.ac.uk/group/forse/
Using Deep Learning to Transform and Analyse NMR Data
During the 55th session of the Global NMR Discussion Meetings held on November 1st, 2022 via Zoom, Prof. Flemming Hansen from University College London, gave a talk on the topic "Using Deep Learning to Transform and Analyse NMR Data". The recording serves as a tutorial.
It will be shown how deep neural networks (DNNs) can be trained for reconstruction of sparsely sampled NMR spectra and for virtual homonuclear decoupling. Another area covered in the talk will be autonomous analysis of chemical exchange saturation transfer (CEST) data, where the trained DNN accurately predicts both the chemical shifts and the uncertainties associated with these.
Speaker's biography:
1997-2003: BSc+MSc, Chemistry + Physics, University of Copenhagen
2003-2005: PhD in Biophysical Chemistry (Prof. Jens Led) , University of Copenhagen
2005-2010: Postdoctoral fellow (Prof Lewis E. Kay), University of Toronto
2010-present: PI, University College London. Full Professor since 2017.
Follow Prof. Hansen's work here:
Twitter: https://twitter.com/dflemminghansen?l...
Google scholar: https://scholar.google.com/citations?...
Website: https://www.ucl.ac.uk/hansen-lab/flem...
Emerging frontiers in solution NMR of large protein systems
During the 54th session of the Global NMR Discussion Meetings held on October 18th, 2022 via Zoom, Prof. Haribabu Arthanari from Harvard Medical School, gave a talk on the topic "Emerging frontiers to address large protein systems by solution NMR". The recording serves as a tutorial.
Speaker's biography:
1994-1996: MSc Chemistry - IIT Madras, India
1996-2003: PhD - Wesleyan University, USA
2003-2010: Research Associate - Harvard Medical School, USA
2010-2016: Lecturer - Harvard Medical School, USA
2016-present: Professor - Harvard Medical School, USA
Follow Prof. Arthanari's work here:
Google scholar: https://scholar.google.com/citations?...
Website: https://artlab.dana-farber.org/
Parahydrogen-based Exchange Chemistry for Next-Generation MR
The Fall 2022 series of meetings began on September 20th with a talk by Dr. Danila Barskiy on the topic "Parahydrogen-based Exchange Chemistry for Next-Generation Magnetic Resonance". The recording serves as a tutorial.
Abstract:
In my talk, I will present our recent work demonstrating that parahydrogen-based spin chemistry can generate hyperpolarized molecules (urea, alcohols, amino acids, ammonium, glucose, etc.) for benchtop (1 tesla) NMR as well as for zero- to ultralow-field (ZULF) NMR. I will describe the basics of exchange-based hyperpolarization and discuss potential applications for chemical analysis.
Speaker's biography:
Dr. Danila A. Barskiy
PhD - Novosibirsk University, 2012 - 2015
Postdoc - Vanderbilt University, 2015 - 2017
Postdoc - University of California Berkeley, 2017 - 2020
Presently, he is a research Group Leader at the Helmholtz Institute, Johannes Gutenberg University Mainz. His group works on chemistry-oriented hyperpolarization technologies for affordable nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI).
Follow Dr. Barskiy's work here:
Google scholar: https://scholar.google.com/citations?...
Website: https://budker.uni-mainz.de/?page_id=70
Twitter: https://twitter.com/tovarishbarskiy
Electrophoretic NMR: an ion speedometer for concentrated electrolytes
During the 47th session of the Global NMR Discussion Meetings held on April 19, 2022 via Zoom, Dr. David Halat from UC Berkeley gave a talk on the topic "Electrophoretic NMR: an ion speedometer for concentrated electrolytes". The recording serves as a tutorial.
Abstract: Pulsed field gradient (PFG) NMR techniques are powerful probes of self-diffusion but remain insensitive to the charged nature of the mobile species. For example, Li-ion battery electrolyte performance is strongly affected by the drift velocity of the working (Li+) cation under an applied potential, and not necessarily to its diffusivity. By synchronizing PFG pulse programs with a simultaneous electric field, electrophoretic NMR (eNMR) can selectively measure cation, anion, and solvent motion and provide a full accounting of ion transport in concentrated electrolytes. I will discuss the experimental and practical underpinnings of eNMR, as well as its complementarity to MD simulations to reveal the migration of specific solvation structures.
Speaker's biography:
2009 — 2013: B.S. Mathematics and Chemistry, Montana State University, USA.
2013 — 2018: Ph.D., University of Cambridge, UK, (with Clare P. Grey)
2018 : Postdoc and FRS Research Associate, University of Cambridge, UK (with Clare P. Grey)
2018 — present: Postdoc, University of California Berkeley, USA (with Jeffrey A. Reimer and Nitash P. Balsara)
Google Scholar: https://scholar.google.com/citations?...
Twitter: @davidhalat